I have a project where I am implementing the Yolo object detection algorithm with different tracking algorithms. I am now struggling to implement the StrongSort tracking with my detection program. Can someone explain how I should implement the algorithm with the use of a GitHub repo. How can I feed the detection results into the tracking algorithm? This is my detection algorithm:
from ultralytics import YOLO
class YoloDetector:
def __init__(self, model_path, confidence):
self.model = YOLO(model_path)
self.classList = ["person"]
self.confidence = confidence
def detect(self, image):
results = self.model.predict(image, conf=self.confidence)
result = results[0]
detections = self.make_detections(result)
return detections
def make_detections(self, result):
boxes = result.boxes
detections = []
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
w, h = x2 - x1, y2 - y1
class_number = int(box.cls[0])
if result.names[class_number] not in self.classList:
continue
conf = box.conf[0]
detections.append((([x1, y1, w, h]), class_number, conf))
return detections